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I. INTRODUCTION !

Large space structures have been identified as having a number of
potential applications for national security and future energy needs. Typical i
applications include solar power station, large space mirror, large space ¥
antenna, space-based radar, and multipurpose large space platform. Various
missions which require large lightweight structures and the major design
requirements of such structures have been summarized by NASA in Refs. 1 and 2. ?
Although prioritized specific missions are yet to be defined, several novel {

and innovative design concepts have been suggested for future applications

(Refs. 3 through 14). These generic conceptual ideas provide valuable informa-

tion regarding the technology needed for developing structurally efficient low ¥
cost systems. The size, design environment, manufacturing methods, and other
characteristics associated with large space structures dictate that the first
time such a structural sysfem assumes its operational configuration, it will

occur in orbit, thus creating unique design and testing problems. Furthermore, .
the cost involved in deploying such Structural assemblies to their full capa- y

city requires a high level of confidence in analytical methods and modeling

I"oyrlook for Space," NASA Task Group, NASA SP-386, January 1976.

2Hedgepeth, John M., "Survey of Future Requirements for Large Space Struc-
tures,” NASA CR-2621, 1975. |

Woods, A. A., Jr., "Offset Wrap Rib Concept and Development (LMSC)," Large |
Space Systems Technology, NASA Conference Publication 2118, 1979.

l
barcher, J. S., "Advanced Sunflower Antenna Concept Development (TRW)," Large |
Space Systems Technology, NASA Conference Publication 2118, 1979. i

Montgomery, D.C. and L.D. Skides, "Development of Maypole (Hoop/Column)
Deployable Reflector Concept for Large Space Systems Applications (Harris
Corp.)," Large Space Systems Technology, NASA Conference Publication 2118,
1979. )

6'Modular Reflector Concepts Study (GDC)," Large Space Systems Technology,
NASA Conference Publication 2118, 1979. 1
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techniques for predicting their structural responses to the natural and induced
environments. Although siznificant emphasis nas been placed on devalaning
design concepts, construction methodoleogy, and deplovment techniques for largze
space structures, extremely limited efforts have been devoted tq developing
efficient analytical methods for structural modeling. As currently envisioned,
a strong candidate for a large low-mass and high-stiffness structure is an open
truss configuration. The design, analysis, and testing of such a structure,
with a large number of structural elements, present several challenging prob-
lems. Some such problems are to develop capabilities for conveniently assess-
ing preliminary designs, efficiently carrying out tradeoff studies, confidently
predicting structural responses, suitably designing ground test methodology,

and judiciously recommending space verification test programs.

7"DOD/STS On-Orbit Assembly Concept Design Study (GDC)," SAMSO-TR-78-128,
1978.

8"DOD/STS On-Orbit Assembly Concept Design Study (MMC)," Martin Marietta
Corporation, Report MCR-78-113, 1978.

9Agan, W. E., "Erectable/Deployable Concepts for Large Space System Techno-
logy (Vought Corp.)," Large Space System Technology, NASA Conference Publi-
cation 2118, 1979.

1oBritton, W. R. and J. D. Johnston, "Space Spider - A Concept for Fabrica-
tion of Large Space Structures,'" AIAA Conference on Large Space Platforms:
Future Needs and Capabilities, September 1978.

llstokes, J. W. and E. C. Pruett, "Structural Assembly in Space," Large Space
Systems Technology, NASA Conference Publication 2118, 1979.

12Nein, M. E. and F. C. Runge, "Science and Applications Space Platforms,"
AIAA 81-0458, AIAA Second Conference on Large Space Platforms, February 1v81.

13j0hnson, R. R., H. Cohan, and G. G. Jacquemin, "A Concept for High Speed
Assembly for Erectable Space Platforms,”" AIAA 81-0446, AIAA Second Confer-
ence on Large Space Platforms, February 1981.

légeo11, H. W., Systematic Design of Deployable Structures," AIAA 81-0444,
AIAA Second Conference on Large Space Platforms, February 1981.

\

10




Iramewor< orodlen

are applled. The metncd nas abwvious limizaticons in thas

'8

e A e ;-
ooT 2 sIT-U -T2 LT

)
[

3 .3ar

(V2]

tions, which 1s both time-consuming and expensive. The discrete field approach
takes advantage of the regularity of the structure. It is an extension of the
classical method used for continuum problems in which equilibrium and compati-
bility equations at each node (or joint) of the structural frame are formulated
first and then the resulting governing equations for the total system are

solved using finite differences and differential calculus.

The state of the art of the discrete field method is summarized in Ref.
15, whereas some example problems illustrating this approach are given in Refs.
16 through 18. Although the discrete field method is useful for moderate-sized
problems with simple geometry, it becomes increasingly complex when applied to

large intricate configurations. =

l5pean, D. L. and R. R. Avent, "State-of-the-Art of Discrete Field Analysis
of Space Structures,'" Proceedings of Second International Conference on
Space Structures. Edited by W. J. Supple, University of Surrey, Guildford,
England, September 1975.

léRenton, J. D., "The Related Behavior of Plane Grids, Space Grids, and
Plates," Space Structures, Blackwell, Oxford, England, 1967.

17Renton, J. D, "General Properties of Space Grids," International Journal of
Mechanical Sciences, Vol. 12, 1970.

18pean, D. L. and C. P. Ugarte, '"Field Solutions for Two-Dimensional Frame-
work," International Journal of Mechanical Sciences, Vol. 10, 1968.
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The third approach 1s a technique o replace discrete structural frame-
works with equivalent continuum models (Refs. 1% tnrouzn 23). It iavolves inz
determination of equivalent elastic and dvnamic prcperties of the truss struc-
ture. The response of a given structure is then predicted by solving the con-
tinuum model under similar loading and boundarv conditions. The continuum
problem can, in general, be simplified by making cerzain logical <inematic
assumptions. For example, a large platform-tvpe truss could be modeled as an
equivalent continuum plate, whereas a long truss boom could be represented by
an equivalent continuum beam. This approach, when applied to large space
structures, has great versatility in efficiently determining the overall
response of the structure to the induced loading as well as in carrying out
the design feasibility and tradeoff studies. Although much work has yet to be

done toward accomplishing "perfection,”

the present study represents a step
forward in the state of the art of developing modeling methodology for large

truss-type structures based on the equivalent continuum approach.

19ikulas, M. M., Jr., H. G. Bush, and M. F. Card, "Structural Stiffness
Strength and Dynamic Characteristics of Large Tetrahedral Space Truss
Structures,” NASA TMX74001, 1977.

20Bysh, H. G., M. M. Mikulas, Jr., and W. L. Heard, "Some Design Considera-
tions for Large Space Structures,' Proceedings of the AIAA/ASME 18th Struc-
tures, Structural Dynamics, and Materials Conference, Vol. A, 1977.

21Renton, J. D., "On the Gridwork Analogy for Plates," Journal of Mechanics,
Physics, and Solids, Vol. 13, 1965,

22F1ower, W. R., and L. C. Schmidt, "Analysis of Space Truss as Equivalent
Plate," Journal of the Structural Division, Vol. 97, ASCE, 1971.

23Heki, K., "On the Effective Rigidities of Lattice Plates," Recent
Researches of Structural Mechanics, Tokyo, 1968.

245yn, C.. T., and T. Y. Yang, "A Continuum Approach Toward Dynamics of
Gridworks," Journal of Applied Mechanics, Vol. 91, ASME, 1965.

25Nayfeh, A. H. and M. S. Hefzy, "Continuum Modeling of Three-Dimensional
Truss-Like Space Structures," AIAA Journal, Vol. 16, No. 8, 1979.
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I1. EQUIVALENT CONTINUUM MODEL

A. DETERMINATION OF EQUIVALENT EFFECTIVE PROPERTIES

The procedure for determining the effective properties of an equivalent
continuum model, similar to that of Nayfeh and Hefzy (Ref. 26), was indepen-
dently derived. The approach is straightforward. For a given truss structure,
all sets of parallel members are identified. The direction cosines for each
set of parallel members are determined with respect to the global reference co-
ordinate sjstem. Unidirectional stiffness properties of each set are derived
next by "smearing"” the stiffness of individual members in the set over the
effective area. Finally, through orthogonal transformations, contributions of

each set to the effective continuum properties are derived.
For a linear elastic body, the stress-strain relations are given by

%5 = Cisin€xg = i,j,k, 0 =1,2,3 (1)

k1 are the components of stress and strain tensor, respec-

tively, and cijk! are the elastic constants. Equation (1), in matrix form,

is written as

where oij and €

(011] (C1111 C1122  ©1133  C1123 C1i31 Criiz] (€11

022 C2211  ©C2222  C2233  C2223  C2231  C2212 €22
733 C3311 €3322 C3333  C3323  C3331 €3312 €33

' %23 - C2311 C2322 C2333 C2323 C2331 Caa1z2| €23 @
931 C3111 ©3122  ©€3133  ©€3123  C3131  C3112 €31

| 912 | €1211 C1222 €1233 C1223  C1212 Ci212) | €12

26Nayfeh, A. H., and M. S. Hefzy, "Continuum Modeling of the Mechanical and
Thermal Behavior of Discrete Large Structures," AIAA 80-0679, AIAA/ASME/ASCE/
AHS 21st Structures, Structural Dynamics, Materials Conference, May 12-14,
1980,

P
-

P




An expression for determining C for an equivalent continuum in

ijki{

terms of the geometric and material properties of the origzinal s:zructure shall
. . . . - th

now be derived. If (‘Bij>m are the direclion cosines of the m parallel

member set and (C' ts)m are the smeared stiffness properties of that set, the

global contributions {Cijkf)m of this set to the effective equivalent continuum

properties are given by

(Cijkl)m = | Bip qu Bkt st)m(céqrs)m (3)
where
: 6xi
(Bij)m = (a—xj>m (4)

or alternatively

(pg..) = [cos(xi , xj)]m (5)

ij’'m

where xj and x{ are the global and local coordinates, respectively.

Equation (3) can be further simplified. Because, in truss structures,

the members have only one unidirectional elastic property Cilll (the modulus of

elasticity along the principal direction of the truss member) Eq. (3) can be

rewritten as

Ciiedn = By B51 B Bi’nCl111'm (e)

?
B. DETERMINATION OF (cllll)m

The effective unidirectional elastic property of a set of parallel

rods, Fig. 1, spaced a apart is given by

Em Am
Ch1'm ™ s h (1)

16
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and the effective mass density is given by

(8)

where Am is the cross-sectional area, Z_ is the modulus of elasticity, and Pn
is the mass density of the members of the mCh parallel member set. The
linear dimension h is a reference measurement introduced for the purpose of

obtaining area average.

| = |

Fig. 1. A Set of Parallel Rods




The equivalent continuum elastic properties Cijkf are now obtained by

summing the contributions of all n parallel! member sats

n
Cijee © 2 Cijei'm (9)
m=1
and the effective mass density is
n
L= ¥ p (10)
0 - om
C. APPLICATIONS
1. Two-Dimensional Framework -

The procedure for obtaining equivalent continuum properties is illus-
trated through example problems. A two-dimensional framework is shown in
Fig. 2. One can easily identify four sets of parallel members. The direction

cosines for these four sets, with respect to Xys X, axes, are

(B, =1 (Byy= UJ2

(B0, =0 (B),= U2

(B, =0 (B, = UV2
-/ V2 (1)

(B = 1 (B,




A3 B3.73

A 4 E4. P4

Fig. 2. Two-Dimensional Framework
(00, 900, +45° Arrangement)




If Am’ Em, and pm (m = 1 through 4) are the cross-sectional area,
modulus of elasticitv, and mass densicv, respectivaly, of the members in zhese

four sets, the effective mass and elastic properties of each set are

p. A E.A
PR Y N
fh 1111°1 fih
0A E.A
py = 21 ! ) 2 2
2 fh 111172 Ih

A

Py = T > T
3 ih 1111°3 2 ih
p' = J._z_—f.‘.A_4 = (c' ) = \/-_i Eﬁé
4 2 £h 111174 2 fh (12)

and all other (C!. ,) wvanish.
ijki’'m
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When Egs. (13) are substituted into Egs. (9), the equivalent elastic

continuum properties obtained are

1 VE_
Clir T T Bt Y e (BaAg v EgA))
c = Y2 (g4, -E,A)
1122 gin U337 Buby
c = ¥Y2_ (g A -E,A,)
1112 grn ‘E3f3 T EuA,
. L V2
2222 ih [EzAz * g (Eghy + EA)
c .2 (E.A, - E,A,) (14)
2212 gin ‘E3fs T Bl -
and the effective mass density is
1 Va_
Py T plA1 + PA, v ()03A3 + PAAA) (15)

This example problem demonstrates the simplicity with which the equiva-
lent continuum effective properties can be derived. The method shall now be

applied to a three-dimensional truss.

22




A sample gfetranhecral Iruss 15 shown in

parallel lavers of equilateral triangular meshes conneczed by Srazing =ars.

. : . e v s - < . - .
The two triangular parailel lavers form U , *+ &0 arrangement of the
orienzartion. Thz gedmelri: and

summarized in Table 1.

I1f h is the height of the truss, L is the length of the members in the

top and bottom layers, and d is the length of bracing bars one can write.
P y 8 g

4 = \/h2+—§— (16)

A repeating element of this truss is shown in Fig. 4. Six sets of
parallel members are identified by numbers 1 through 6. The direction cosines

for these six sets are given in Table 2.
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Bars d 4

Table 2. Direction Cosines for Parallel Member Sets
Set Dtrection Cosines

Number Bll 321 331
1 1 0 0
2 1/2 3 /2 0
3 -1/2 J3 /2 0
4 £/2d V3 1/6d h/d
> -1/2d V3 1/ 6d h/d
6 0 ¢3-1/3d h/d
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Following the example problem discussed earlier, the unidirectionai

effective properties for the members in the top and bottom lavers of the

re in

i

tetrahedral truss car be determined easilv., The arrangement of the memb
.0 Q . 1. : - . s X

the present case 1s u , + c0 . Table 3 ilsts the effective unidirectional

properties of the three sets of the members in the top and bottom lavers of

the truss.

Table 3. Unidirectional Properties of the Members
in the Top and Bottom Layers

Effective Unidirectional Properties
Parallel Member
Set Number Top Layer Bottom Layer
Elastic Mass Elastic Mass
-
1, 2, ana 3 2v/3 BiAL | 23 AM | 2 3 B | 23 Pat
3 fZh 3 th 3 £h 3 £h

The effective unidirectional properties for the bracing members are
determined next. A projection of the tetrahedral truss on a plane perpen-
dicular to the parallel member Set & (see Fig. 4) is shown in Fig. 5. 1In this
figure, bold dots represent the members of Set 4, whereas the effective area
occupied by each member is shaded. Unidirectional effective elastic and mass
properties for the Set 4 members are now computed by smearing the stiffness of

each member over the effective area. Thus

effective stiffness = 2v3 4 E. A
3 2 d ' d
. h{
effective mass - 2v3 4 P, A (17)
3 2 'd’"d
h{
27
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Equations (6), (9), and (10) are now used for deriving the elastic and

-
<

mass properties of an equivalent continuum =model, or the surpose ol i1..ius-

tration, expression for the elastic constant C1111 is derived in detail.

From Eq. (6), using Tables 2 and 3 and Eq. (17)

(C... ). = (B.H* (.. ), = 2v3 Bihy + 23 Fofs
111171 1171 111171 3 +h 3 fth
T TG YIS SR/ W o SR/ M
111172 11°2 111172 24 fh 24 fh
(Corida = (Bi)*(cr . = 3 Bho s Bty
111173 1173 1111°3 24 fh 24 fh
(c ) = (B )Q(C' ) = _\/l-_.lﬁ_fi
111174 1174 111174 24 £h d3
(C,..0c = (B, )@, 7 = /3 Eaba £
111175 11°5 111175 24 £h d3
(C...). = (B, .. > =0
111176 1176 111176

Equation (9) yields

= '
Ciinn m§ Ci11’m

or

29
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Similarly, other Ci'

C1122 T 41

€133

1123

€131

C2222 v

€233

€223

Cr231

[ ]
N

€3333
3323
2323
€2331

Ciia1

Ci112

1212 41

jk

;'5 can be derived:

(=]

(18)

e A -




and the equivalent mass density is given by

2V 3
o Th

4
(Pd) * Py 7 Pydy )

(19)

This completes the methodologv for obtaining the equivalent elastic and mass

properties for the continuum in terms of the geometric and material properties

of a given tetrahedral truss.

In order to solve the continuum problem for predicting the structural

response of the original truss, the governing field equations are (Ref. 27):

Equations of Motion

2
80 - du
e T P
xj t ot
Constitutive Equations
aij = Cijki ekf i,j,k, ¢ = 1,2,3

(20)

(21)

27Fung, Y.C., Foundations of Solid Mechanics, Prentice~Hall, Inc., Englewood

Cliffs, NJ, 1965.
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Strain-Displacement Relations

- (22)
1)

m
"
=
TN
Q)LQ)
®X| €
- .
+
Q| @
T
[
Sa—

where Fi are the body forces and u, are the displacement components. The
problem in this form is so wrought with mathematical complexities that a
general solution is almost impossible. However, it is often possible to make
the problem tractable and obtain a reasonable solution through certain

judicious assumptions.
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III. SOLUTION OF THE CONTINUUM MGDEL

The mathematical difficulties involved in determining solutions for the
equivalent continuum model, derived in Section II, mav be circumvented by
making some simplified kinematic assumptions. For example, in the case of a
tetrahedral truss representing a hypothetical large space platform, its equi-
valent continuum model can be viewed as a plate (Ref. 28). This is precisely

the approach adopted in the present study.

Since the displacement components vary linearly along the members of

the truss, it is assumed tha: the displacement components Ups Ugs and u, of

3

the equivalent continuum plate model vary linearly with the x. coordinate,

3
i.e.
) 0
U T owt 9
=0
Y2 4 t %3 %
_ 0 0
Uy = Uy b Xa€q, 23)
. . 0 0 0 . .
where, as shown in Fig. 4. v Yy and u, are the mid-surface displacement
components (at X3 = 0), ¢1 and ¢, are the rotation components, and 523 is

the transverse normal strain. The mid-surface displacements, the rotation
components, and the transverse normal strain are all assumed independent of

the Xq coordinate.

28Szilard, R., Theory and Analysis of Plates, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1974,
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As a consequence of this displacement field assumption, the strain

components ara

aul G l
€ = ——1 + X _.l
11 axl 3 9%, ]
oul d¢
€ = _2 + X —2
22 6x2 3 6x2 |
0 0 ;
€ = l <& + au1> 1 b'e & + iﬁ
12 2 ax1 8x2 2 73 axl ax2 '
o 3
€33 = €33
0 0
du €
_ 1 3 1 33
e23 ) <ax * ¢2> M 2 *3 ax
2 2
0 by 0 c
Ou R €
1 3 1 33
631 2 <6x1 * S‘,1> * 7 %3 6x1 (24) )

The stress and moment resultants for

defined as follows:

Stress Resultants

h/2

Naﬂ = / aaﬁ dx3
“h/2
h2

Ny3 = / 933 d%3
“h/2
h/2

Qv =~ %o 3 dx3
-h/2

the equivalent continuum plate are

a,B =1,2

(25)
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Moment Resultants

a2
\1aﬁ = / OC'B X4 d‘(3 (2¢)
-h/2
and
h/2
Ma = / %3 X3 dx3 (27)
-h/2

The equivalent stiffnesses (viz., extensional, coupling, and bending),

for the continuum model are as follows:

Extensional Stiffness

h/2
Aijk! Cijkf dx3 (28)

!

h/2 ]
Bijkl = / Cijkl X4 dx3 (29) b
-h/2

Coupling Stiffness

Bending Stiffness

h/2 2
i Dijkl = / Cijkl x5 dx3 (30)
-h/2
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The relationships between the stress/moment resultants and the mid-

surface strains arce

. 0 0
Nag = Pagen €t Rag 33652 T Bagen K
N.. = A e va . 48 K (31)
33 33¢n € 333333 T Bayen Ky
PP
~ 0 33
Qy = 24,343 %3 * Bazgy %
M = B Eo + B (0 + D X
| ap agén “&n «g33° 33 afEn En
]
|
0 3523
Mo = Ba3e3€es * Da3es ax, (32)
¥
where o, B,&and nn = 1,2,:_and
0" 0
o .1 (%, %
af 2 %y axﬁ
0
S U o B
L /9% a%,
X = S|z + (33)
ap 2\ 9%, oxg
37
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The equaticns of motion for the equivalent continuum plate moce. are

fusinz Zgs.

where q,, q,, and q, are the external load components and 311, M

are the external moment components in the X1s Xg» and x

respectively.

(=]
(&7

¥

Mo, %
ax1 ax2
6N12 . aN22
ax1 ax2
an . 6Q2
6x1 6x2
aMll . aMlZ
ax1 axz
6M12 . 6M22
6x1 ax2
Mo, M
ax1 ax2
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0" ¢
= 1
P >
1 oc2
62¢
5 —2
1 at2
6260
- 33
pl 2
ot
62u0 62¢
1 + 5 1
6t2 2 6t2
62u0 62¢
2 + 5 ___Z
6:2 2 6t2
a2u0 6260
3 . E 33
2
atz 6t2

2’
directions,

(34)

and 313




and

_ h/ 2 )
Py = f Py *3 d%3 (35) |
‘h/Z E

An example poblem is discussed in Section IV.
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IV. EXAMPLE PROBLEY

A. EQUIVALENT STIFFNESSES

In order to assess the accuracv of using zhe a2guivalent continuum <cdal,
the methodology was applied to a hypothetical space platform (Fig. 3) composed
of an assembly of tetrahedral trusses. The extensional, coupling, and bending
stiffnesses are determined from Eqs. (28) through (30) following the procedure

given by Heki (Ref. 29):

Extensional S*iffness

A T 34\;3_ <51A1 *OEA T %f—j EdAd>
A2 T _{—3;" <E1A1 * Byt %;—;Ed"d>
Az T _\/g_ ":; Eqta

A T % % E gty

Atz 7O Az =0

A222 ~ 31.\/1; <51A1 OByt %5 EdAd>

29Heki, K., "On the Effective Rigidities of Lattice Plates,' Recent
Researches of Structural Mechanics, Tokyo, 1968.

s
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A‘\,“,‘ = — E A
2233 3 dj dd
.l
Ar023 T T 873 Eitd
d
Ay — O Ay =0
Yo
Aysyy = 2V3 53 Byhy
124
Ay3p3 = 0 Ayqyp = O A3331
2
_ fiw?
A2323 © T3 3 Eq44
4331 = O A3z = 0
2
J3 n
Ay131 3 Edha
d
- 1t
Az T 63 Eihg
3
- 3 1 £
Ag12 T Tayg <E1A1 *ER T 93 EdAd>
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(]
(9]
o4
9
r—
-
3
e
(97}
ot
[

w

81111

31122

B1133
By222
87233
B3333
B2323

LEVEN!

B212

- % (£,4, - E3,)
!gl ? (£ 4] = B4

81123 Biist = Biiz
3V3 B e a - Ea

31 (B1h T By
By223 Bya31 7 Ba212
B3323 By3;n ® Bas
B33 B2312 0
B3112 0”
JZE; (E.A E,A,)

g0 ‘E1A1 T Bafy

Bending Stiffnesses

Dllll

D122

2222

D)212

— (E,A, + EZAZ)

— (ElA1 + £2A2)

T (EIAI + E2A2)

— (EIAl + E2A2)
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The density parameters for the equivalent continuum model are obtained

from Eqs. {19) and (35):

- 23 d
b Py = : (plAl * A, 4 T LA, )
- 3h _
pl = P (plA1 FEAZ)
P =-££EE¢A + oA +19 pa (39)
2 2 ( 171 272 31 "4 d)

With the help of Eqs. (31) through (33), and Eqs. (36) through (38), the

equations of motion (34) are rewritten in terms of the displacements and

rotation components as follows:

azuo 62u0 _ 62u0 aeo
Al ; 41212 ; v B0 Y A . 1133 2
1 ox] ox, 9x,0x%, 9%y
az¢1 az¢1 : 62¢5
*Ba 2t B2t By * Big12) 3iax
o ex 1772
1 2
Bzug _ 62¢1
+q, = Pg—s + P (40)
1 072 17,2
44
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\

2] ¢1 3¢, 8%,
* (Byayo * By122) 33w 312120 72 Bag20 T2
1772 ox Ix
1 2
2 0 2
- au2 - a¢2
+q, = P + p, —=
2 07,22 17,2
2 0 2 0
9 uy 0 uy 8%y 8¢¥7
A —3 + A —3 A A 2
3131 2 2323 2 1313 3x 2323 3x
3 ax 1 2
1 2
ohad ol
+ a3 = Pp—3 * P
ot ot
P P 0240
B 1 B 1 (B + B ) —
1111 2 1212 2 1122 * 812127 ax.ox
ax ox 1772
1 2
62¢1 62¢2 aug
* Dia1a 2 Ppi22 * P1212) Fxex. - P33 | ax
6x2 1772 1
+ M, =5 + P, —=
1 17,2 27,2
45

(41)

(42)
62u0
D 1
1111 ax2
1

+ ¢1>
(43)




2
B*U? azug 62u9
(B‘ an * B‘)ﬂ n) - ~ + B Ay A ~ + Bn",qo :
1122 1212 O\la.‘(: 1212 a:(; —— axi
az.cl azcz azsoz
* D192 * Pyoya? 5t Pz T3t Dagoa T3
1772 ox ox
1 2
<au3 \..s5 \ _ azug _ 62¢2
A — v e+ M, = P + p, —= (44)
2323\ ox, T2 2 17,2 2,2
A -_— - A — - A € + ) = p + P (45)
1133 ax, ~ %2233 Tox, 3333€33 3 17,2 2T

In the present example problem, the cross-sectional areas of the mem-

bers in the top and the bottom layers are assumed to be identical and ali the

members lengths are equal, i.e.

Also

The consequence of these assumptions is that

46
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Also from Egs.

and

(38)

Dllll

D1122

D3222

D1212

D (say)

The stiffness and mass properties of the equivalent continuum model are sum-

marized in Table 4.

Table 4.

Equivalent Continuum Model Properties

Extensional Stiffness

Ain
Ai122
A133
43333

A1123

82222

A212

= A233

“A2223

Bending Stiffness

D1

Di122

D;222

D212

47323

A3112

= D

D/3

Mass and Moment of Inertia

Py

ol
~N

= Ay

A

J3 E 1
T\ T3y
2J3 E,

5 1 A4
8V/3 E,

5 7 A4
Ve &,

13 £ °d




The equations of motion (40) through (43) now simplifv as

2 0 2 0 20 0 20
et ! oYy 9€33 = oy v
—— — — = {7 L
Al T3 Y A2 T3 Y B awoex. T M3 Tax, T Y1 Po 7™ (¢6) F
ox] x> 19%,; 1 ot o
x
. E
azug 62u2 62u2 6623 _ a“ug
——— — —— = /, y
A2 amaon. T M2 T2 M T2 M ek, T 02 Po =3 (47) :
1972 x] ax2 2 ¢ :.-
i
a2u? %0 a¥, a¢ 6240 4
A —3 .3, 1,2 +q, = P 3 (48) -
3131 2 2 3131 { ax. * 3% 3 0 2 i
axl ax2 1 2 ot ;
2 2 2 0 2 3
6¢ pd¥% gp 9% <a“3 v = 9% (49) '
D + = + o — - A — + o )+ = p 49
axf 3 axg 3axpx,  as\ax, T f1 1 2 72 :
0% 8%y o2 aus o2q
ll32{9 a1 *% g +D % A313 2. P)r My, = b, % (50
X19%, ox) ox, Xy at
oup oup 0 \ _ ey
A 133 o, " ox,) " Ajyzz€yy v My = P, o2 5D

The accuracy of the equivalent continuum model developed is illustrated
by the following free vibration problem in which comparison of the natural fre-
quencies obtained from the continuum model is made with those obtained directly

from the actual truss structure solution. For the free vibration case

.1, 2,3

L
]
Q
-
L]

and
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Differentiating Eqs. (49) and (50) with respect to x, and X,, respectively

1
and adding them togather vield

20 20
2 2 o u é u 2
v etu\ 3 3\ L= dw
D <8_2+a—"2'> 43131 (a 2 * 2> fnn? T P (52)
X1 9% X1 0% t
where
a¢1 6¢2
Y=t o,
1 2
Equation (48) can be rewritten as
azug azug _ azug
A3131< 7t "2 )t AanY T P 3 (53)
ax ox at
1 2
or -
= 20
P, Ju
¥ = ry 0 g - vzug (54)
3131 ot
where operator
o - 22,2
2 2
ax1 ax2
Substitution of ¥ from Eq. (53) gives
= 20
2 P 2 du
- ) -
<nv2- p2%><v2-A L ) +By—3 = 0 (55)
ot 3131 ot ot

Equation (55) includes the rotary inertia as well as transverse shear deforma-

tion terms.
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If the rotary inertia terms are omitted from Eq. (55), it reduces to

5 ) a2uo
D<V2 - A__O _6_2> vzug + D 2 = 0 (56)
3131 8t “

If the transverse shear deformation is neglected, but the rotary inertia terms

are retained, Eq. (55) reduces to

2\ du
- 0 -
pv? - B, =) vAd + B,—3 = 0 (57)
2,2 3 2

ot ot
Finally, if both the transverse shear deformation and rotary inertia terms are

omitted, Eq. (55) reduces to the classical plate equation

DVwuy + Po 7 = 0 - (58)

The solution of Eqs. (55), (56), (57), or (58) for appropriate boundary condi-

tions shall yield the natural frequencies for the equivalent continuum model.

The significance of including the rotary inertia and transverse shear

'+ terms has been discussed by Reissner (Ref. 30), and Mindlin (Refs. 31, 32),.

3°Reissner, E., "The Effect of Transverse Shear Deformation on the Bending
of Elastic Plates,” Journal of Applied Mechanics, Vol. 12, June 1945.

3Mindlin, R. D., "Influence of Rotary Inertia and Shear on Flexural Motions
of Isotropic, Elastic Plates," Journal of Applied Mechanics, Vol. 18, No. 1,
March 1951.

324indlin, R. D., A. Schacknow, and H. Deresiewicz, "Flexural Vibrations of
Rectangular Plates," Journal of Applied Mechanics, Vol. 23, No. 3, September
1956.
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It is xnown that Soth effects serve 0 decrease fhe computed Irequencies

-~
[

Yoo

- - 4 e ]

w

N~ 33 : -
Txo3use O e 2

present study, the natural frequencies are computed Irom Zags. (33) throuzh
(58) and comparecd with those obtained from solving the original truss

structure.

As a first example case, simply supported boundary conditions are
assumed. It is possible to obtain the continuum model closed form solution
for such boundary conditions. These boundary conditions may be stated (see

Fig. 7)

0 - - -
ug 0 , M11 0 at X, 0 and X, a
uo =0 M =0 at x, =0 and X, = b
3 ? 22 2 2
i 3 )
M - Rl
SS X|
SS

SS

SS

Fig. 7. Simply Supported Plate
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. . 0
Assuming displacement u

385

nTx nmx
A sin sin
a

o

e (59)

c
(%)
fl

where .\ is a constant, m and n are integers, and W 1is circular frequency. It
is clear that the boundary conditions are automatically satisfied by the

displacement function. The frequency w may now be determined by substituting

ug into Egs. (55) through (58).

Case 1. Rotary inertia and transverse shear terms included. The

characteristic equation in this case, obtained from Eq. (55) is

p.P p.D 2 2 2 2\ 2
A“w“‘["z A (%Y *T’o}wz*"ab 5t > =0
3131 3131 a b a ;

Case 2. Transverse shear term included, rotary inertia term omitted.

O’Nlﬂ

(60)

The natural frequencies in this case, obtained from Eq. (56), are given by

m2 n2 2
2 T D a

) ”2D m2 n2
° ir, lz )
3131 \a b (61)

Case 3. Rotary inertia term included, transverse shear term omitted.

o

Ir this case, the natural frequencies, obtained from Eq. (57), are given by

m2 n2 2
_— e
4 <az b2>
2 D
w = - 2
Pq n P, 2 2\2
— Ei + 25 + 1
po a b (62)
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Case 4. Classical plate solution. The natural frequencies in this

Z2\2
> (63)

case, obtained from Eg. (33), are gziven by

€
~
]
la
=
o
i
|J
N (%]
+
~l?

[}
o

B. NUMERICAL RESULTS

The following geometric and material properties were assumed for the

tetrahedral truss:

Case A
A = A = 50 x10 % n?
/ = 6m _
3
p = 2768 kg/m
6
E = 71.7 x 10° kPa
Case B

A = 50 x 10_6 m2

A, = 2.5x 10 %n?
d

l = 6m

P = 2768 kg/m3

E = 71.7 x 10° kpa
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The natural frequencies for the tetrahedral truss with £, €, 12, and :8

repeating elements in 2ach direction were computad using the NASTRAN computer
program. Equations (€0) through (63) are used for computing the natural fre-
quencies of the equivalent continuum model. If N is the number of the repeat-
ing tetrahedral truss elements in each direction, plate dimensions a and b are

given by

The results are summarized in Tables 5 through 12 and in Figs. 8 through 15.
The finite element solution of the truss is represented by FEM in the tables,

whereas I through IV represent the continuum solutions with varying degrees of

approximations. These are defined as follows:

I = Transverse shear and rotary inertia terms included
II = Transverse shear terms only included

IIT = Rotary inertia terms only included

IV = Classical plate solution

The undeformed shape of a truss with 12 repeating tetrahedral elements
(orthographic view) is shown in Fig. 16, whereas its projections on the X-Z
plane and the Y-Z plane are shown in Figs. 17 and 18, respectively. The cor-
responding views for the first four mode shapes of the same truss structure

are shown in Figs. 19 through 30.
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Table 5.

Comparison of Natural Frequencies -

First Mode

CASE A
l{ i
6 E 8 12 18
; .
FEM 13. 67 8.85 4,51 2.18
I 13,26 8.28 4.03 1.88
11 13.44 8.37 4.06 1.88
111 16.94 9.69 4.36 1.95
Iv 17.63 9.92 4.41 1.96
6
4 L
N
L}
- é 2 o
—
L /(
0 7—-—-—-———*“-——— —
|
-2 1 AL
4 8 16 20
Number of Bays, N
Fig. 8. Comparison of Natural Frequencies - First Mode
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Table 6. Ccmparison of Natural Frequencies - Second Mode
j CASE aA: Ay T A
7 A
N
. 6 8 12 | 18
f21 i |
|
FEM 22.00 15.08 8.20 4.13
I 24.43 16.11 8.38 4.09
II 24.78 16,33 8.48 4.12
III 36.94 21.55 9.84 4.43
1v 40.29 22.67 10.07 4.48
6
Al Ag= A
/
]
—|= 2k
J
Mg (g I
“_N
N—— ‘-\\
0p— = S
| /L/
..2 1 I L
4 8 12 16 20
Number of Bays, N
Fig. 9. Comparison of Natural Frequencies -~ Second Mode
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o
Table 7. Comparison of Natural Frequencies - Third Mode
CASE A: Ad = A .
N E
6 8 12 18 f
f12 ;
FEM 24.60 17.06 9.36 4.76
1 27.47 18.30 9. 68 4,78
II 27.84 18.58 9.81 4.82
II1 43,23 25.36 11. 64 5.25
1v 47.85 .26.91 11.96 5.32
6
. Ad = A
4+
N
|
~E 2F IV
N
S~S— \\\\
o /L/ -
I
_2 1 1 1
4 8 12 16 20
Number of Bays, N
Fig. 10. Comparison of Natural Frequencies -~ Third Mode
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Table 8. Comparison of Natural Frequencies - Fourth Mode
| CASE A: Ay = A
—
| : .
¢ 6 8 12 ‘ 18 ‘
22 !
FEM 31.80 23, 64 12.86 6.76
I 35.40 24,16 13.25 6.75
I1 35.80 24,51 13.44 6.82
I1I 61.10 36.41 16.94 7.69
v 70.51 39.66 17.63 7.84
6 =
Ad = A
4+
~—
|
= - Vv
SE !
o
SNS—— \\\§
0 | - ~——‘—~—
l/(
-2 | - 1 1
4 8 12 16 20

Number of Bays, N

Fig. 11. Comparison of Natural Frequencies - Fourth Mode
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Table 9. Comparison of Natural Frequencies - First Mode
CASE B: Ad 0.03A
!
N i v
6 8 12 ! 18
fi1 |
FEM 5.31 3.92 2.49 1.51
I 5.43 3.98 2.48 1.47
11 5.44 3.98 2.49 1.47
I11 20.29 11.66 5.26 2.36
v 21.39 11.99 5.33 2.37
6 |
- Ad = 0, 05A
4 ;
- !
! \\ lV !
=5 2+ AN f .
Dl = < |
\5 T—~ ‘
0—
S |
-2 1 1 1
8 12 16 20
Number of Bays, N
Fig. 12. Comparison of Natural Frequencies - First Mode
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Table 10. Comparison of Natural Frequencies - Second Mode
CASE B: Ad = 0.05
Y
N ] !
£ 6 8 12 18
21
FEM 7.91 5.96 3.90 2.46
1 8.37 6.21 4.01 2.51
11 8.37 6.21 4.01 2,51
I1I 43.78 25.74 11.84 5.35
v 48.74 27.42 12.19 5.42
6
\
\
\
4+ \
] \\
\’\
SE 2 S~
- ~ o
A \\
\.—/
0 -
| ’///f
-2 ] | |
4 8 12 16 20
Number of Bays, N
Fig. 13. Comparison of Natural Frequencies - Second Mode
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Third Mode

Table 11. Comparison of Natural Frequencies -
CASE 3: .-\d = 0,054
T T T
. ) ;
6 8 12 18
12 | , i
FEM 8.92 6. 68 4.36 2.75
I 9.14 6.79 4,41 2.78
11 9.14 6.79 4.41 2.78
111 51.07 30.23 13.98 6.33
1v 57.88 32,56 14.47 6.43
6
\ - Ad = 0. 05A
\
\
\
4 \L v
PSRN N ;
N
1 N
~
\
“—- tt‘ — -~
Y =~
~——
|
-2 | 1 1
4 8 12 16 20
Number of Bays, N
Fig. 14. Comparison of Natural Frequencies ~ Third Mode
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Table 12. Comparison of Natural Frequencies - Fourth Mode

CASE B: Ad = 2,034
— , .
% | |
6 3 12 13
{
| ! ]
. g
FEM 10. 63 8.04 5.33 3.43 | ]
1 11.15 8.30 5.43 3.48 ¥
{ 11 11.15 8.30 5.43 3.48 ,
i 1891 71. 60 43.16 20.29 9.26
v 86.30 47.98 21.33 9.48 ‘
\ |
\ )
6 AN :
v Ad = 0. 05A ‘
N |
~
4+ N v |
N\ |
\ ;
— N ¢ b
1 \\\ 'H
= = S~ -
— N |
W—N i
0 — ,/’L/’//
I
-2 1 ] 1
4 8 12 6 20

Number of Bays, N

Fig. 15. Comparison of Natural Frequencies - Fourth Mode

62




Vibration Modes
12 x 12 Tetrahedral Truss Structural Model

Simply Supported Boundary Conditions

et Aits sl

Undeformed Shape - Orthographic View

16.

Fig.

(Simply Supported Boundary Conditions)
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Vibration Modes
12 x 12 Tetrahedral Truss Structural Mode!

Simply Supported Boundary Conditions
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Second Mode - X-Z Plane Projection

Fig. 23.
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Vibration Modes
12 x 12 Tetrahedral Truss Structural Model

Simply Supported Boundary Conditions
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Third Mode - Orthographic View

25.

(Simpiy Supported Boundary Conditions)




Vibration Modes
12 x 12 Tetrahedral Truss Structural Model

Simply Supported Boundary Conditions
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Third Mode ~ X-Z Plane Projection
(Simply Supported Boundary Conditions)

Fig. 26.
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Vibration Modes
12 x 12 Tetrahedral Truss Structural Model

Simply Supported Boundary Conditions

74

s)

jection
Condition

(Simply Supported Boundary

Fig. 27, Third Mode - Y-Z Plane Pro

A VT S




(suorifpuo) Kiepunog paizoddng Apdurs)
matp orydea8oyiyag - apoW ylanog gy ‘314

N

@\ 45 . . . . Ny
. S o 8 -® v
QIR RS S I e IW; g mmwv\s '
AR PR A S R m.vm,ﬂm.ﬂcd,w S
AR S dﬁ%.‘\‘ P XA O SRS .ﬂb’ 7 l!.u-”)>1 ;
AN NI 2 i NN e, sy
N NSRS N

R I NS T ] L
Sl S
AR TATS .‘,,_ﬂ%_,,. GRS
RIS s SR Y SRRSO A
AN ﬁuuﬁmmmhwm& wgm.ﬂﬂu&mﬂw ‘ wﬂ@ nﬂsﬁ“&&&“

S DL e Y ONZIN S SURNIS RN e w1 .y

‘A\;A\ PSR IS AL AV RS —
. qﬂ”&.ﬁh I..mvnh«“»ﬂ R «._.’4'],4«“

—

X

XIS ] Y

suol}lpuo) Asepunog payoddns Ajdwis
|9POW [eJNINULS SSNU| |eapayelidl gl X 2i

S3POW UoljeJqIA

75




Vibration Modes
12 x 12 Tetrahedral Truss Structural Model

Simply Supported Boundary Conditions

Fourth Mode - X-Z Plane Projection
(simply Supported Boundary Conditions)

Fig. 29.
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Numerical results, presented for the sinply supported tetrahedral truss,
demonstrate the accuracy obtainable from the equivalent continuum model. It is
observed that, in most instances, the error is less than 3 percent. Further-
more, the four solutions, I through IV, demonstrate the significance of includ-
ing the transverse shear and rotary inertia terms in formulating the equivalent
plate problem. It is observed that Solution I, which includes both the trans-
verse shear and rotary inertia effects, is very good even when the number of
basic repeating truss elements is small. The effect of transverse shear, which
is quite significant for a truss with a small number of repeating elements,
becomes less pronounced as the number of these elements increases. This is
shown in Figs. 8 through 15. The rotary inertia effect, on the other hand, is
important only for higher frequency responses and for a smaller number of
repeating elements. Yet, its effect is much less pronounced than that of the
transverse shear ksee Tables 5 through 12). Furthermore, i: is also observed
that the effect of transverse shear is much more significant for the case in
which Ad = 0.05A. Finally, the mode shapes shown in Figs. 16 through 30 exhi-
bit striking similarities to those of a plate with simply supported boundary

conditions.

In the second example case, free—free boundary conditions are assumed.
The natural frequencies for the truss are determined, as in the first case,
using the NASTRAN computer program. Since, for the free~free boundary condi-
tion, the closed form solution is not readily available for the equivalent con-
tinuum plate, the natural frequencies are determined using the NASTRAN coumputer

program. A procedure given by MacNeal (Ref. 33) is followed for this purpose.

33MacNeal, R. H., "A Simple Quadrilateral Shell Element,"” Computer and
Structures, Vol. 8, 1978.
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It may be noted here that the finite element solution of a free-free !
plate accounts for transverse shear only. The natural frequencies computad
for the truss as well as for the equivalent contiauum model are given 1in

Tables 13 and l4. ;

Table 13. Comparison of Natural Frequencies, 41
Free-Free Boundary Conditions

vy

CASE A: Ag = A
N
6 12 18

Frequency
First Mode Truss 8.63 2.56 1.20

£11 Continuum 9.29 2.66 1.23
Second Mode Truss 12.47 3.72 1.72

£21 Cont Louum 13.81 3.87 1.76 H
Third Mode Truss 15.43 4.91 2.34

£12 Continuum 18. 56 5.50 2.56 | ;
Fourth Mode Truss 18.80 6.11 2.92 .

£22 Gontiouum 20.07 6.35 3.02 i
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|
i Table 14. Comparison of Natural Frequencies,
| Free-Free Boundary Conditions

|
1 ’ +
CASE B: Ag = 0.05A ;
N
6 12 l 18 ,
Frequency ‘
B
First Mode Truss 5.31 2.11 1.12 ;
i
Continuum
f11 Model 4,72 1.98 1.09
7. . .
Second Mode Truss 22 3.02 1.64
Continuum
f21 Model 6. 61 2.87 1.60
Third Mode Truss 7.62 3.49 2.03
Continuum
£12 Model 7.74 3.50 2.04 i
Fourth Mode Truss 8:74 3.88 2.26 )
Continuum
f22 Model 7.76 3.59 2.15

The associated mode shapes (orthographic view, projections on the X-Z and Y-Z
planes) are shown in Figs. 31 through 42. A good comparison is once again
obtained between the truss model and its equivalent continuum model. The mode

shapes (Figs. 31 through 42) are also similar to those of a free-free plate. :

——— e e
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Vibration Modes
12 x 12 Tetrahedral Truss Structural Model

Free-Free Boundary Conditions
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Third Mode - X-Z Plane Projection
(Free~Free Boundary Conditions)

38.

Fig.
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V. CONCLUSIONS

A methodology is presented for modeling large truss—tvpe structures
based on the concept of equivalent continuum. The procedure for obtaining
equivalent effective elastic -nd dynamic properties in terms of the material
and geometric properties of tne truss is simple and straightforward. & general
three~dimensional equivalent continuum model is reduced, in the present study,
to a two~dimensional plate through simple kinematic assumptions. The platform
and the boundary conditions of the equivalent continuum plate model simulate
those of the original truss structures. The effects of transverse shearing
strain, rotary inertia, bending-extensional and inertia coupling are included

in the continuum model.

Numerical reéults, presented in this study, are for a tetrahedral truss
with simply supported and free-free boundary conditions. Whereas a closed form
solution was obtained for the equivalent continuum plate with simply supported
boundary conditions, the same was not possible in the case of a plate with
free-free boundary conditions. The solution in the latter case was obtained
using the NASTRAN computer program. The results adequately demonstrate the
accuracy obtainable from the continuum model. In most instances, the error
is less than 3 percent. Furthermore, the four solutions, I through IV, demon-
strate the significance of including the transverse shear and rotary inertia
terms. It is observed that the plate solution I, which includes both trans-
verse shear and rotary inertia effects, is very good, zaven when the number of

basic repeating truss elements is small.

For the truss with a small numb%; of repeating elements, the effect of
transverse shear is significant. As the number of the repeating elements in-
creases, the transverse shear effect becomes less pronounced as shown in Figs.
8 through 15. The rotary inertia effect, on the other hand, is important only
for higher frequency responses and for a smaller number of repeating elements.
Yet, it is much less pronounced than that of the transverse shear (see Tables 5

through 12). Furthermore, the effect of transverse shear becomes much more
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significant for the case in which Ad = 0.05A as compared to the case in which

Ad v~ A. The mode shapes of the truss with simply supported and free-free
boundary conditions (see Figs. 16 through 24) exhibit striking similarity with
those of a plate with similar boundary conditions. The main conclusions of the

study are summarized as follows:

1. The technique of replacing a large truss structure with an equivalent

continuum is extremely promising.

2. Good agreement between the discrete and its equivalent continuum model

solutions can be obtained.

3. The classical plate solution may only be suitable for simple geometries
with large numbers of repeating modules. For relatively small numbers
of repeating truss elements, the transverse shear and rotary inertia
effects must be included in the solution of the equivalent continuum

model.
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